Signature Files and Signature File

Construction

YanjunChen
University of Winnipeg, Canada

Yong Shi
University of Winnipeg, Canada

INTRODUCTION

Animportant question in information retrieval ishow to
create a database index which can be searched effi-
ciently for the data one seeks. Today, one or more of the
following four techniques have been frequently used:
full text searching, B-trees, inversion, and the signature
file. Full text searching imposes no space overhead but
requires long response time. In contrast, B-trees, inver-
sion, and the signature file work quickl, but need alarge
intermediary representation structure (index), which
provides direct links to relevant data. In this paper, we
concentrate on the techniques of signature files and
discuss different construction approaches of a signa-
ture file.

The signature technique cannot only be used in docu-
ment databases but also in relational and object-ori-
ented databases. In a document database, a set of
semistructured (XML) documents is stored and the
gueriesrelated to keywords arefrequently evaluated. To
speed up the evaluation of such queries, we can con-
struct signatures for words and superimpose them to
establish signatures for document blocks, which can be
used to cut off nonrelevant documents as early as pos-
siblewhen eval uating aquery. Especially, such amethod
can be extended to handle the so-called containment
queries, for which not only the key words but also the
hierarchical structure of a document has to be consid-
ered. We can also handle queries issued to a relational
or an object-oriented database using the signature tech-
nique by establishing signatures for attribute values,
tuples, as well as tables and classes.

BACKGROUND

The signature file method was originally introduced as
a text indexing methodology (Faloutsos, 1985;
Faloutsos, Lee, Plaisant & Shneiderman, 1990). Nowa-
days, however, it is utilized in a wide range of applica-
tions, such as in office filing (Christodoulakis,
Theodoridou, Ho, Papa, & Pathria, 1986), hypertext

systems (Faloutsos et al.), relational and object-ori-
ented databases (Chang & Schek, 1989; Ishikawa,
Kitagawa, & Ohbo, 1993; Lee & Lee, 1992; Sacks-
Davis, Kent, Ramamohanarao, Thom, & Zobel, 1995;
Yong, Lee, & Kim, 1994), aswell asdatamining (Andre-
Joesson & Badal, 1997). It requires much smaller stor-
age space than inverted files and can handle insertion
and update operations in databases easily.

A typical query processing with the signaturefileis
as follows: When a query is given, a query signature is
formed from the query value. Then each signaturein the
signature file is examined over the query signature. If a
signature in the file matches the query signature, the
corresponding data object becomes a candidate that
may satisfy the query. Such an object is called a drop.
The next step of the query processing is the false drop
resolution. Each drop is accessed and examined whether
it actually satisfies the query condition. Drops that fail
the test are called false drops while the qualified data
objects are called actual drops.

A variety of approaches for constructing signature
files have been proposed, such as bit-slice files, S
trees, and signature trees. In the following, we overview
all of them and discuss a new application of signatures
for tree inclusion problem, which is important for con-
tainment query evaluation in document databases.

SIGNATURE FILES AND SIGNATURE
FILE ORGANIZATION

Signature Files

Intuitively, asignature file can be considered as a set of
bit strings, which are called signatures. Compared to the
inverted index, the signature file is more efficient in
handling new insertions and queries on parts of words.
But the scheme introduces information loss. More spe-
cifically, its output usually involves a number of false
drops, which may only be identified by means of a full
text scanning on every text block short-listed in the
output. Also, for each query processed, the entire signa-

Copyright © 2005, IdeaGroup Inc., distributing in print or el ectronic formswithout written permission of |Gl isprohibited.

ture file needs to be searched (Faloutsos, 1985;
Faloutsos, 1992). Consequently, the signature file
method involves high processing and I/O cost. This
problem is mitigated by partitioning the signature file,
as well as by exploiting parallel computer architecture
(Ciaccia & Zezula, 1996).

During the creation of a signature file, each word is
processed separately by a hashing function. The scheme
sets a constant number (m) of 1sinthe[1..F] range. The
resulting binary pattern is called the word signature.
Each text is seen to consist of fixed-size logical blocks
and each block involves a constant number (D) of
noncommon, distinct words. The D word signatures of a
block are superimposed (bit OR-ed) to produce a single
F-bit pattern, which is the block signature stored as an
entry in the signature file.

Figure 1 depicts the signature generation and com-
parison process of a block containing three words (then
D = 3), say “SGML,” “database,” and “information.”
Eachsignatureisof length F =12, inwhichm=4bitsare
set to 1. When a query arrives, the block signatures are
scanned and many nonqualifying blocks are discarded.
Therest are either checked (so that the “false drops” are
discarded; see below) or they are returned to the user as
they are. Concretely, a query specifying certain values
to be searched for will be transformed into a query
signature s, in the same way as for word signatures. The
guery signature is then compared to every block signa-
ture in the signature file. Three possible outcomes of
the comparison are exemplified in Figure 1. (1) the
block matches the query; that is, for every bit set in Sy
the corresponding bit in the block signature sis also set
(i.e.,, sas =s) and the block contains really the query
word; (2) the block doesn’t match the query (i.e., s A s,
= sq); and (3) the signature comparison indicates a
match but the block in fact doesn’t match the search
criteria (false drop). In order to eliminate false drops,
the block must be examined after the block signature
signifies a successful match.

In asignature file, a set of signaturesis sequentially
stored, which is easy to implement and requires low

Signature Files and Signature File Construction

storage spaceand |ow update cost. However, when eval u-
ating a query, a full scan of the signature file has to be
performed. Therefore, it is generally slow in retrieval.

Figure 1(b) shows a simple signature file. To deter-
mine the length of signatures, we use the following
formula (Faloutsos, 1985):

FxIn2=mxD

1)
Bit-Slice Files

A signature file can be stored in a column-wise manner.
That is, the signatures in the file are vertically stored in
a set of files (Ishikawa et al., 1993), i.e., in F files, in
each of which one bit per signature for all the signatures
is stored as shown in Figure 2.

With such adatastructure, the signaturesare checked
slice-by-slice (rather than signature-by-signature) to
find matching signatures. To demonstrate the retrieval,
consider the query signature s, = 10110000. First, we
check the first bit-slice file and find that only three
positions: first, fourth and sixth positions match the
first bit in s. Then, we check the second bit-slice file.
This time, however, only those three positions will be
checked. Since the second bitin s is0, no positionswill
befiltered. Next, we check the third bit-slice file against
the third bit in s . Because all the three positions are set
to 1 init, the same positions in the next bit-slice file,
i.e., in the fourth bit-slice file will be checked against
fourth bit in s . Since none of the three positions in the
fourth bit-slice file matches this bit, the search stops
and reports a nil.

From this process, we can see that only part of the F
bit-slice files have to be scanned. So the search cost
must be lower than that of a sequential file. However,
update cost becomes larger. For example, an insertion
of a new set signature requires about F disk accesses,
one for each bit-dlice file.

S-Trees

Figure 1. Signature generation, comparison and signature file

block: ... SGML ... databases... information ... sgnature file: QOIDfile:

word signature: queries: query signatures. matchingresults [1 01010 0 1

SGML 01000010010 SGML 01000010010 machwithos | 91100011

database 100 010010 100 XML 011 000 100100 nomatchwithOS |[1110100 0

information v 01010002000 informatik110 100100 000 false drop CIERETLE

0T01I001T]

object signature 110 10 11 110 01010110
(OS]

@ (b)

Signature Files and Signature File Construction

Figure 2. lllustration for hit-slice file

8 bit-slicefiles: OID file:

PRPORPOOOO
RPOOOOFRrOO
PR OOORFO
O ORPOR LR

CORRRRERK
COORRROR

Similar to a B*-tree, an S-tree is a height-balanced
multiway tree (Deppisch, 1986). Each internal node
correspondsto apage, which contains a set of signatures,
and each leaf node contains a set of entries of the form
<s, oid>, where the object is accessed by the oid and sis
its signature. Let N be the parent node of N'. Then, there
exists asignature in N whose value is obtained by super-
imposing all the signaturesin N’. See Figure 3 for illus-
tration.

To retrieve a query signature, we search the S-tree
top-down. However, more than one path may be visited.
Thefirst signaturein theroot N, leads usto its child node
N, because the third and fourth bitsare set to 1. InN,, the
S, Then, we go to the leaf node N, and N,. In N,, we find
two matching candidates{o,, 0.}, andin N,, we have only
one{o,}.

The construction of an S-treeis an insertion-splitting
process. At the very beginning, the S-tree contains only
an empty leaf node, and signatures in afile are inserted
into it one by one. When a leaf hode N becomes full, it
will be split into two nodes, and at the same time a parent
node Noarent will be generated if it does not exist. In
addition, two new signatures will put in Noren- ASSUME
that the capacity of N is K (i.e., N can accommodate K
signatures.) Then, when we try to insert the (K + 1)th
signature into N, it has to be split into two nodes N_and
N,. Todothis, wewill pick asignaturein N which hasthe

Figure 3. Illustration for Stree and node splitting

N

00111110| *
N 1110001 1 N

00101110 11100001
00111100 1100001 1
N N, I_(X)110110] N, N N

o

o s O

13

0 ,
€Y o,

X
00101100 00110200 | 000101 10] [10100001 | [11000010
00101010 | 100111000 | 0110010 01100001 - 0100001 1

000101 10 | 111000001 | | 2000001 1
= o, |5 11000001j| o — |
0 0°] 0

heaviest signature weight (i.e., with the most 1s) in N.
Itis called the o-seed and will be putin N . Then, we
select a second signature which has the maximum num-
ber of 1sin those positions wherea has 0. That is, the
signature provides the maximal weight increase to o.
Thissignatureiscalled the 3-seed and putin N . Any of
the rest K - 1 signatures are assigned to N or N,
depending on whether it is closer to N, or N .. The two
new signatures (denoted s and s)) to be put into the
parent node are obtained by superimposing the signa-
tures in N and N, respectively. See Figure 3(b) for
illustration.

The advantage of this method isthat the scanning of
awhole signature file is replaced by searching several
paths in an S-tree. However, the space overhead is
almost doubled. Furthermore, due to superimposing,
the nodes near the root tend to have heavy weights and
thushavelow selectivity. Thisisimproved by Tousidou,
Bozanis, and Manolopoulos (2002). They elaborate
the selection of the o-seed and the 3-seed so that their
distance is increased. However, this kind of improve-
ment is achieved at the cost of time, i.e., by checking
more signatures, which makes the insertion of asigna-
ture into a S-tree extremely inefficient.

Inthefollowing, wediscussaquitedifferent method,
called signature trees, by means of which all the draw-
backs of S-trees are removed.

Signature Trees

Consider asignature s of length F. We denote it as s =
s[1]s[2] ... s[F], whereeachs[j] € {0, 1} (j =1, ..., F).
We also use s(j,, -, j,) to denote a sequence of pairs
w.rt.s: (j,,sli D0, s, - G, sli,]), where1<j <F
forke{1, ..., h}.

Definition 1 (signature identifier). Let S=s..s,
..., denote asignaturefile. Consider s (1 <i <n).
If there exists a sequence: j, ..., j, such that for
any k =i (1<k<n)wehaves(j,, ...,j,) 2S5 -+ Jp)
then we say s(j,, ..., J,) identifies the signature s
or say s(j,, ---, J,) isan identifier of s.

00101110 ~— S,
N 00111100 | TS,
00101100 ! N N
spilt [

ouie | I, (@m0
00110100 00101010 00111000
001001 10 N\
00111000 —1 B-seed
o-seed
(b)

Definition 2 (signature tree). A signature tree for a

signature file S=s.s,s,, where S'=s for i=
and|s|=F fork=1,..,n, isabinary tree T such
that:

1. For each internal node of T, the left edge | eav-

ingitisalwayslabeled with 0, and theright edge
is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as

pointers to n different positions of s, s, ... and
s,in S (signature file). For a leaf node u, p(u)
represents the pointer to the corresponding
signature in S.

3. Eachinternal nodev is associated with a num-

ber, denoted sk(v), which is the bit offset of a
given bit positioninthe block signature pattern.
That bit position will be checked when v is
encountered.

4. Letj, ..., |, bethe numbers associated with the

nodes on a path from the root to a leaf node
labeled i (then, thisleaf nodeisapointer totheith
signature in S). Let p,, ..., p, be the sequence of
labels of edges on thispath. Then, (j,, p,) ... (,, P,)
makes up a signature identifier for s, s(j,, ..., j,)-

Example 1. In Figure 4(b), we show a signature
tree for the signature file shown in Figure 4(a). In
this signature tree, each edge is labeled with 0 or
1, and each leaf node is a pointer to asignaturein
thesignaturefile. In addition, each internal nodeis
associated with apositive integer (which isused to
tell how many bits to skip when searching). Con-
sider the path going through the nodes marked 1, 7,
and 4. If this path is searched for locating some
signature s, then three bits of s: §[1], 5[7], and §[4]
will have been checked at that moment. If §[4] =1,
the search will go to the right child of the node
marked 4. This child node is marked with 5 and

Figure 4. Signature tree

W N o L LN, O D

011 001 000 101
111 011001 111
111 101 010 11
011 001 101 11
011 101 110 101
011 111 110 101
011 001 111 111
111011111 111

(@

Signature Files and Signature File Construction

then the fifth bit of s: s[5] will be checked.

See the path consisting of the dashed edges in
Figure 4(b), which corresponds to the identifier of
S, S,(1,7,4,5) =(1,0)(7, 1)(4, 1)(5, 1). Similarly,
theidentifier of s;iss (1, 4) = (1, 1)(4, 1); seethe
path consisting of the thick edges in Figure 4(b).
Now we discuss how to search a signature tree to
model the behavior of a signature file as a filter.
Lets, be aquery signature. The i-th position of s,
is denoted assq(i). During the traversal of asigna-
ture tree, the inexact matching is defined as fol-
lows:

Let v be the node encountered and S, (i) be the
position to be checked.

If s (i) = 1, we move to the right child of v.

If sq(i) =0, both theright and left child of v will
be visited.

In fact, this definition just corresponds to the
signature matching criterion.

Example 2. Consider the signature file and the
signature tree shown in Figure 4(b) once again.

Assume s, = 000 100 100 000. We search the
signature tree top-down. First, we check theroot r.
Since sk(r) = 1, we check the first bitins_. ItisO.
Then, both the child nodes of r will be explored.
(See the thick edges in Figure 5.) When we visit
the left child node v of r, the seventh bit in s will
be checked since sk(v) = 7. It isequal to 1. Then,
only the right child node of v will be checked. We
repeat this process until all the possible leaf nodes
are visited. Obviously, this process is much more
efficient than a sequential searching. For this ex-
ample, only 42 bits are checked (6 bits during the
tree search and 36 bits during the signature check-
ing). But by the scanning of the signature file, 96
bits will be checked. In general, if asignature file
contains N signatures, the method discussed above

Figure 5. Signature tree search

Signature Files and Signature File Construction

requires only O(N/2'") comparisons in the worst
case, where | represents the number of bits set in
s, since each bit set in s will prohibit half of a
subtree from being visited. Compared to the time
complexity of the signature file scanning O(N), it
is a major benefit.

Due to limitation of space, we don’t discuss here
the maintenance of signature trees. An interested
reader is referred to Chen (2004) for detailed
description.

Integrating Signatures Into Tree
Inclusion

In this section, we discuss how to integrate signatures
into the tree inclusion problem, which is important to
containment queriesin document databases. As pointed
out in Kilpelainen and Mannila (1995), the eval uation of
a containment query is in essence to check whether a
guery tree is concluded in a document tree.

Let T be an ordered, rooted tree with root v and
childrenv,, v,, ..., v.. The postorder traversal of T(v) (the
tree rooted at V) is obtained by visiting T(v,), L<k<iin
order, recursively, and then visiting the v. The postorder
number, post(v), of a node v e V(T) is the number of
nodes preceding v in the postorder traversal of T. We
define an ordering of the nodes of T given by vt V' iff
post(v) < post(v'). Also, v~ Vv iff vpV or v =V.
Furthermore, we extend this ordering with two special
nodes”tvmr T.Theleft relatives, Ir(v), of a node v
e V(T) are the set of nodes that are to the left of v and
similarly the right relatives, rr(v), are the set of nodes
that are to the right of v.

Definition 3. Let Sand T be rooted |abeled trees.

Figure 6. Illustration of tree inclusion

b,/\b d

@)

Figure 7. Node signatures

0101 0000
00111000
0001 0101
00101000
1010 1000 ¢
1100 0000

(b)

TN oTR

b
e b\ b/-\»eb'—__—

We defined an ordered embedding (f, S, T) as an
injective function f: V(S) V(T) such that for all
nodes v, u e V(S),

1. label(v) = label(f(v)); (label preservation con-
dition)

2. visan ancestor of u iff f(v) is an ancestor of
f(u); (ancestor condition)

3. vistothe left of uiff f(v) isto the left of f(u);
(sibling condition)]

Figure 6 shows an example of an ordered inclusion.

In Figure 6(a), we show that the tree on the left can
beincluded in the tree on theright by deleting the nodes
labeled: d, e, and b. Figure 6(b) shows a possible embed-
ding. An embedding is root preserving if f(root(S)) =
root(T). Figure 6(b) shows also an example of the root
preserving embedding.

A lot of algorithms have been developed to check
tree inclusion, such as those reported in Alonso and
Schott (1993), Kilpelainen and Mannila (1995), Rich-
ter (1997), and Chen (1998). All the methods focus,
however, on the bottom-up strategies to get optimal
computational complexities, which are not suitable for
the database environment since the algorithms pro-
posed assume that both the target tree (or, say, the
document tree) and the pattern tree (or, say, the query
tree) can be accommodated completely in main memory.
Recently, atop-down algorithm was proposed (Chen &
Chen, 2004) which has the same time complexity as the
best bottom-up algorithm but needs no extra space.
More importantly, it works well in a database environ-
ment for the reason that it checks a target tree in a top-
down fashion, and each time only part of the tree is
mani pulated. Furthermore, it can be combined with sig-
natures to speed up query evaluation.

Q 1111 1000

e C
Q 1100 0000 @ 1010 10006 0001 0101 0010 1000

(c)

The top-down algorithm can be outlined as follows.
A detailed description can be found in Chen and Chen
(2004).

Algorithm top-down-tree-inclusion

1. Letr andr,be the roots of T and S, respec-
tively.

2. LetT,.., T bethesubtreesofr,andS, ..., S,
be the subtrees of r,.

3. Ifr doesn't matchr,, trytofindani (1<i<n)
such that T, includes the whole S.

4. If r, matchesr,, try to find i, ..., i, such that

T, contains S, ..., S, , T, contains S, 4, ...,

1 1 h I2 It

S, ,and T, contains S, ., ... S; , where
2 k k-1 k

S, =5,
k m

To speed up this process, we assign each label a
signature, and construct the signatures for non-
leaf nodes as follows:

Definition 4. Let vbeanodeinatreeT. If visa

leaf node, its signature s, ,, ..., s, be its children,

thens,=sv §, v..v§, , where srepresents the

signature for the label associated with v, and §, ,
.., and §, arethesignaturesof v,, ...,
tively.

Example 3. Consider the tree shown in Figure
7(a). If the signatures assigned to the labels are
those shown in Figure 7(b), rach node in the tree
will have a signature as shown in Figure 7(c).

V,, respec-

Then, each timewe check anodeuin Sagainst anode
vin T, wewill first check their signatures. If they don’t
match, the subtree rooted at v will be cut off and not be
searched any more, reducing the time overhead greatly.

Here, an important problem is how to determine the
length of signatures. Due to the superimposing of sigha-
tures along the tree paths, Equation (1) (shown in the
section Signature Files) is not useful any more since it
was established only for the simple structure of sequen-
tial signature files. However, if the length of signatures
is not properly determined, as in an S-tree, the signa-
tures near the root will be very heavy and the selectivity
will be reduced dramatically. For this reason, we make
thefollowing analysisand devel op anew way to estimate
thesignaturelengthin such away that the above problem
can be removed.

Consider two signatures s and s,. Assume that both
of them are of length F and with m and m, bits set to 1,

Signature Files and Signature File Construction

respectively. Now, let s = s v s,. Obviously, s will
possibly contain more 1s. To keep theratio of 1sinsnot
increased, s should be set longer. The question is: How
long should s be? Let | be the number of 1sin s and
denote 4 = | - m’, where m’" = max(m,, m,). Then, F + c3
should be areasonable length for s, where c isaconstant
and should be tuned for different applications. Thevalue
of & can be estimated as follows.

Let; bearandom variable representing the number
of positions, in which both s and s, have 1s. Then, the
mathematical expectation of) can be calculated as be-
low:

El =1xp(l=1) + 2xp(l =2) + ... + m"xp(l = m")
(2)
where m” = min(m,, m,) and p(), = i) represents the
probability of | equal toi. To calculate this probability,
we use the following formula:

G
)

Notethat | =m + m, -3 . Then,wehaved=1-m=
m, + m, -3 - max(m, m,).

Using the above formulas, we can determine the
length of signatures for a tree as follows. First, we
calculate the average number of key wordsin all theleaf
nodes, which is used as the value of D to determine the
initial values of F and m using Equation (1). Then, we
compute the lengths of signatures for the internal nodes
inabottom-upway. That is, wefirst cal culatethelengths
for all those nodes, each of which is a parent of some
leaf nodes. Then, we compute the lengths for the nodes
at a higher lever. This process is repeated until the
length of the signature for the root is computed, which
will be used as the length of all the signatures to be
generated.

©)

FUTURE TREND

As discussed above, the signature file is a useful tech-
nique for text indexing and query evaluation in data-
bases. It can also be utilized for some problems in the
computational graph theory, i.e., for the tree inclusion
problem. As future research, we will concentrate on an
interesting issue: how to reduce the size of a signature
file. This may be done by elaborating Equation (1),

Signature Files and Signature File Construction

shown in the section Signature Files, which is only an
empirical formula. What wewant isto find amathemati-
cal method to determine, for a given set of key words
which are distributed in a collection of blocks, the
minimum length of the signatures and the best choice of
the number of bits that are set to 1.

CONCLUSION

In this article, four methods for constructing signature
files are described. They are the sequential signature
file, the bit-slice signature file, the S-tree, and the
signature tree. Among these methods, the signature file
has the simplest structure and is easy to maintain, but it
is slow for information retrieval. In contrast, the bit-
sliced file and the S-tree are efficient for searching but
need more time for maintenance. In addition, an S-tree
needs much more space than a sequential signature file
or a bit-slice file. The last method, i.e., the signature
tree structure, improves the S-tree by using less space
for storage and less time for searching. Finally, as an
important application, the signatures can be integrated
into the top-down treeinclusion strategy to speed up the
evaluation of containment queries. This can also be
considered as a quite different way to organize a signa-
ture file.

REFERENCES

Alonso, L., & Schott, R. (1993). On the tree inclusion
problem. Proceedings of Mathematical Foundations
of Computer Science, (pp. 211-221).

Andre-Joesson, H., & Badal, D. (1997). Using signature
files for querying time-series data. Proceedings of the
1st European Symposium on Principles of Data Min-
ing and Knowledge Discovery.

Chang, W. W., & Schek, H. J. (1989). A signature access
method for the STARBURST database system. Proceed-
ings of the 19th VLDB Conference, (pp. 145-153).

Chen, W. (1998). More efficient algorithm for ordered
tree inclusion. Journal of Algorithms, 26, 370-385.

Chen, Y. (2004). Building signature trees into OODBs.
Journal of Information Science and Engineering, 20,
275-304.

Chen, Y., & Chen, Y. B. (2004). An efficient top-down
algorithm for tree inclusion. Proceedings of the 18th
International Conference Symposium on High Per-
formance Computing System and Application,.

Christodoulakis, S., Theodoridou, M., Ho, F., Papa, M.,
& Pathria, A. (1986). Multimedia document presenta-
tion, information extraction and document formation in
MINOS—A model and a system. ACM Transactions On
Office Information Systems, 4(4), 345-386.

Ciaccia, P., & Zezula, P. (1996), Declustering of key-
based partitioned signature files. ACM Transactions on
Database Systems, 21(3), 295-338.

Deppisch, U. (1986). S-tree: A dynamic balanced signa-
ture index for office retrieval. ACM S GIR Conference,
(pp. 77-87).

Faloutsos, C. (1985). Access methods for text. ACM
Computing Surveys, 17(1), 49-74.

Faloutsos, C. (1992). Signaturefiles. In W. B. Frakes &
R. Baeza-Yates (Eds.), Information retrieval: Data
structures & algorithms (pp. 44-65). NJ. Prentice
Hall.

Faloutsos, C., Lee, R., Plaisant, C., & Shneiderman, B.
(1990). Incorporating string search in hypertext sys-
tem: User interface and signature file design issues.
HyperMedia, 2(3), 183-200.

Ishikawa, Y ., Kitagawa, H., & Ohbo, N. (1993). Evalua-
tion of signature files as set access facilitiesin OODBs.
Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, (pp. 247- 256).

Kilpelainen, P., & Mannila, H. (1995). Ordered and
unordered tree inclusion. SIAM Journal of Computing,
24, 340-356.

Lee, W., & Lee, D. L. (1992). Signaturefile methods for
indexing object-oriented database systems. Proceed-
ings of 1CIC’'92—2nd International Conference on
Data and Knowledge Engineering: Theory and Appli-
cation, (pp. 616-622).

Richter, T. (1997). A new algorithm for the ordered tree
inclusion problem. In Lecture Notes of Computer Sci-
ence: Vol. 1264. Proceedings of the 8th Annual Sym-
posium on Combinatorial Pattern Matching, CPM
(pp. 150-166).

Sacks-Davis, R., Kent, A., Ramamohanarao, K., Thom,
J., & Zobel, J. (1995). Atlas: A nested relational data-
base system for text application. |IEEE Transactions on
Knowledge and Data Engineering, 7(3), 454-470.

Tousidou, E., Bozanis, P., & Manolopoulos, Y. (2002).
Signature-based structures for objects with set-values
attributes. Information Systems, 27(2), 93-121.

Yong, H. S, Lee, S., & Kim, H. J. (1994). Applying
signatures for forward traversal query processing in

object-oriented databases. Proceedings of 10th Inter-
national Conference on Data Engineering, (pp. 518-
525).

KEY TERMS

Bit-Slice Signature File: A bit-slicefileisafilein
which one bit per signature for all the signatures is
stored. For a set of signatures of length F, F bit-slice
files will be generated.

Sequential Signature File: A signature fileis a set
of signatures stored in afile in a sequential way.

Signature Identifier: A signature identifier for a
signature in a signature file is a positioned bit string
which can be used to identify it from others.

Signature Files and Signature File Construction

Signature Tree: A signature tree is an index struc-
ture in which each path represents a signature identifier
for the signature pointed to by the corresponding |eaf
node.

Signatures: A bit string generated for akey word by
using a hash function.

S-tree: An S-tree is a height-balanced multiway
tree. Each internal node corresponds to a page, which
contains a set of signatures, and each |eaf node contains
a set of entries of the form <s, oid>, where the object is
accessed by the oid and sisits signature.

Tree Inclusion: Let T and She ordered, labeled
trees. Sis said to be included in Tif there is a sequence
of delete operations performed on T which make T
isomorphic to S.

