
 1

�
��������	
���	

���
��������	
���	
���
��������

Yanjun Chen
University of Winnipeg, Canada

Yong Shi
University of Winnipeg, Canada

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

An important question in information retrieval is how to
create a database index which can be searched effi-
ciently for the data one seeks. Today, one or more of the
following four techniques have been frequently used:
full text searching, B-trees, inversion, and the signature
file. Full text searching imposes no space overhead but
requires long response time. In contrast, B-trees, inver-
sion, and the signature file work quickl, but need a large
intermediary representation structure (index), which
provides direct links to relevant data. In this paper, we
concentrate on the techniques of signature files and
discuss different construction approaches of a signa-
ture file.

The signature technique cannot only be used in docu-
ment databases but also in relational and object-ori-
ented databases. In a document database, a set of
semistructured (XML) documents is stored and the
queries related to keywords are frequently evaluated. To
speed up the evaluation of such queries, we can con-
struct signatures for words and superimpose them to
establish signatures for document blocks, which can be
used to cut off nonrelevant documents as early as pos-
sible when evaluating a query. Especially, such a method
can be extended to handle the so-called containment
queries, for which not only the key words but also the
hierarchical structure of a document has to be consid-
ered. We can also handle queries issued to a relational
or an object-oriented database using the signature tech-
nique by establishing signatures for attribute values,
tuples, as well as tables and classes.

BACKGROUND

The signature file method was originally introduced as
a text indexing methodology (Faloutsos, 1985;
Faloutsos, Lee, Plaisant & Shneiderman, 1990). Nowa-
days, however, it is utilized in a wide range of applica-
tions, such as in office filing (Christodoulakis,
Theodoridou, Ho, Papa, & Pathria, 1986), hypertext

systems (Faloutsos et al.), relational and object-ori-
ented databases (Chang & Schek, 1989; Ishikawa,
Kitagawa, & Ohbo, 1993; Lee & Lee, 1992; Sacks-
Davis, Kent, Ramamohanarao, Thom, & Zobel, 1995;
Yong, Lee, & Kim, 1994), as well as data mining (Andre-
Joesson & Badal, 1997). It requires much smaller stor-
age space than inverted files and can handle insertion
and update operations in databases easily.

A typical query processing with the signature file is
as follows: When a query is given, a query signature is
formed from the query value. Then each signature in the
signature file is examined over the query signature. If a
signature in the file matches the query signature, the
corresponding data object becomes a candidate that
may satisfy the query. Such an object is called a drop.
The next step of the query processing is the false drop
resolution. Each drop is accessed and examined whether
it actually satisfies the query condition. Drops that fail
the test are called false drops while the qualified data
objects are called actual drops.

A variety of approaches for constructing signature
files have been proposed, such as bit-slice files, S-
trees, and signature trees. In the following, we overview
all of them and discuss a new application of signatures
for tree inclusion problem, which is important for con-
tainment query evaluation in document databases.

SIGNATURE FILES AND SIGNATURE
FILE ORGANIZATION

Signature Files

Intuitively, a signature file can be considered as a set of
bit strings, which are called signatures. Compared to the
inverted index, the signature file is more efficient in
handling new insertions and queries on parts of words.
But the scheme introduces information loss. More spe-
cifically, its output usually involves a number of false
drops, which may only be identified by means of a full
text scanning on every text block short-listed in the
output. Also, for each query processed, the entire signa-

2

Signature Files and Signature File Construction

ture file needs to be searched (Faloutsos, 1985;
Faloutsos, 1992). Consequently, the signature file
method involves high processing and I/O cost. This
problem is mitigated by partitioning the signature file,
as well as by exploiting parallel computer architecture
(Ciaccia & Zezula, 1996).

During the creation of a signature file, each word is
processed separately by a hashing function. The scheme
sets a constant number (m) of 1s in the [1..F] range. The
resulting binary pattern is called the word signature.
Each text is seen to consist of fixed-size logical blocks
and each block involves a constant number (D) of
noncommon, distinct words. The D word signatures of a
block are superimposed (bit OR-ed) to produce a single
F-bit pattern, which is the block signature stored as an
entry in the signature file.

Figure 1 depicts the signature generation and com-
parison process of a block containing three words (then
D = 3), say “SGML,” “database,” and “information.”
Each signature is of length F = 12, in which m = 4 bits are
set to 1. When a query arrives, the block signatures are
scanned and many nonqualifying blocks are discarded.
The rest are either checked (so that the “false drops” are
discarded; see below) or they are returned to the user as
they are. Concretely, a query specifying certain values
to be searched for will be transformed into a query
signature s

q
 in the same way as for word signatures. The

query signature is then compared to every block signa-
ture in the signature file. Three possible outcomes of
the comparison are exemplified in Figure 1: (1) the
block matches the query; that is, for every bit set in s

q
,

the corresponding bit in the block signature s is also set
(i.e., s ∧ s

q
= s

q
) and the block contains really the query

word; (2) the block doesn’t match the query (i.e., s ∧ s
q

� s
q
); and (3) the signature comparison indicates a

match but the block in fact doesn’t match the search
criteria (false drop). In order to eliminate false drops,
the block must be examined after the block signature
signifies a successful match.

In a signature file, a set of signatures is sequentially
stored, which is easy to implement and requires low

storage space and low update cost. However, when evalu-
ating a query, a full scan of the signature file has to be
performed. Therefore, it is generally slow in retrieval.

Figure 1(b) shows a simple signature file. To deter-
mine the length of signatures, we use the following
formula (Faloutsos, 1985):

F × ln2 = m × D
 (1)

Bit-Slice Files

A signature file can be stored in a column-wise manner.
That is, the signatures in the file are vertically stored in
a set of files (Ishikawa et al., 1993), i.e., in F files, in
each of which one bit per signature for all the signatures
is stored as shown in Figure 2.

With such a data structure, the signatures are checked
slice-by-slice (rather than signature-by-signature) to
find matching signatures. To demonstrate the retrieval,
consider the query signature s

q
 = 10110000. First, we

check the first bit-slice file and find that only three
positions: first, fourth and sixth positions match the
first bit in s

q
. Then, we check the second bit-slice file.

This time, however, only those three positions will be
checked. Since the second bit in s

q
is 0, no positions will

be filtered. Next, we check the third bit-slice file against
the third bit in s

q
. Because all the three positions are set

to 1 in it, the same positions in the next bit-slice file,
i.e., in the fourth bit-slice file will be checked against
fourth bit in s

q
. Since none of the three positions in the

fourth bit-slice file matches this bit, the search stops
and reports a nil.

From this process, we can see that only part of the F
bit-slice files have to be scanned. So the search cost
must be lower than that of a sequential file. However,
update cost becomes larger. For example, an insertion
of a new set signature requires about F disk accesses,
one for each bit-slice file.

S-Trees

Figure 1. Signature generation, comparison and signature file

block: ... SGML ... databases ... information ...
word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature

∨

Fig. 1. Signature generation, comparison and signature file

queries:

SGML

XML
informatik

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matching results:

match with OS

no match with OS
false drop

(OS)

1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1
1 1 1 0 1 0 0 0
0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 0
0 1 0 1 0 0 1 1
0 1 0 1 0 1 1 0

o
1

o
2

o
3

o
4

o
5

o
6

o
7

o
8

signature file: OID file:

(a) (b)

 3

Signature Files and Signature File Construction

�

Similar to a B+-tree, an S-tree is a height-balanced
multiway tree (Deppisch, 1986). Each internal node
corresponds to a page, which contains a set of signatures,
and each leaf node contains a set of entries of the form
<s, oid>, where the object is accessed by the oid and s is
its signature. Let N be the parent node of N’. Then, there
exists a signature in N whose value is obtained by super-
imposing all the signatures in N’. See Figure 3 for illus-
tration.

To retrieve a query signature, we search the S-tree
top-down. However, more than one path may be visited.
The first signature in the root N

1
leads us to its child node

N
2
because the third and fourth bits are set to 1. In N

2
, the

s
q
. Then, we go to the leaf node N

4
 and N

5
. In N

4
, we find

two matching candidates {o
4
, o

5
}, and in N

5
, we have only

one {o
7
}.

The construction of an S-tree is an insertion-splitting
process. At the very beginning, the S-tree contains only
an empty leaf node, and signatures in a file are inserted
into it one by one. When a leaf node N becomes full, it
will be split into two nodes, and at the same time a parent
node N

parent
will be generated if it does not exist. In

addition, two new signatures will put in N
parent

. Assume
that the capacity of N is K (i.e., N can accommodate K
signatures.) Then, when we try to insert the (K + 1)th
signature into N, it has to be split into two nodes Nα

and
N

�
. To do this, we will pick a signature in N which has the

heaviest signature weight (i.e., with the most 1s) in N.
It is called the α-seed and will be put in Nα. Then, we
select a second signature which has the maximum num-
ber of 1s in those positions whereα has 0. That is, the
signature provides the maximal weight increase to α.
This signature is called the �-seed and put in N

�
. Any of

the rest K - 1 signatures are assigned to Nα
or N

�
,

depending on whether it is closer to Nα
or N

�
. The two

new signatures (denoted sα
and s

�
) to be put into the

parent node are obtained by superimposing the signa-
tures in Nα

and N
�
, respectively. See Figure 3(b) for

illustration.
The advantage of this method is that the scanning of

a whole signature file is replaced by searching several
paths in an S-tree. However, the space overhead is
almost doubled. Furthermore, due to superimposing,
the nodes near the root tend to have heavy weights and
thus have low selectivity. This is improved by Tousidou,
Bozanis, and Manolopoulos (2002). They elaborate
the selection of the α-seed and the �-seed so that their
distance is increased. However, this kind of improve-
ment is achieved at the cost of time, i.e., by checking
more signatures, which makes the insertion of a signa-
ture into a S-tree extremely inefficient.

In the following, we discuss a quite different method,
called signature trees, by means of which all the draw-
backs of S-trees are removed.

Signature Trees

Consider a signature s
i
of length F. We denote it as s

i
=

s
i
[1]s

i
[2] ... s

i
[F], where each s

i
[j] ∈ {0, 1} (j = 1, ..., F).

We also use s
i
(j

1
, ..., j

h
) to denote a sequence of pairs

w.r.t. s
i
: (j

1
,

s

i
[j

1
])(j

2
, s

i
[j

2
]) ... (j

h
, s

i
[j

h
]), where 1 ≤ j

k
≤ F

for k ∈{1, ..., h}.

Definition 1 (signature identifier). Let S = s
1
.s

2

... .s
n
 denote a signature file. Consider s

i
(1 ≤i ≤n).

If there exists a sequence: j
1
, ..., j

h
 such that for

any k �i (1 ≤k ≤n) we have s
i
(j

1
, ..., j

h
) �s

k
(j

1
, ..., j

h
),

then we say s
i
(j

1
, ..., j

h
) identifies the signature s

i

or say s
i
(j

1
, ..., j

h
) is an identifier of s

i
.

Figure 2. Illustration for bit-slice file

Fig . 2 . Il lu s t rat i o n fo r b it - sl i ce f il e

1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1
1 1 1 0 1 0 0 0
0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 0
0 1 0 1 0 0 1 1
0 1 0 1 0 1 1 0

o 1
o 2
o 3
o 4
o 5
o 6
o 7
o 8

8 b it- s lic e f ile s : OI D fi le:

Figure 3. Illustration for S-tree and node splitting

10100001
01100001
11100000
11000001

Fig. 3. Illustration for S-tree and node splitting

(a) (b)

00111110
1110001 1

00101 110
00111100
00110110

11100001
1100001 1

000101 10
00110010
000101 10

00110100
00111000

00101 100
00101010
001001 10

11000010
0100001 1
1000001 1

N
7

N
1

N
2

N
3

N
4

N
5

N
6

N
8

o
1

o
2

o
15

o
3

o
4o
5 o

6

o
7

o
8

o
9

o
12o
1 1o
10

o
14o
13

00101 100
00101010
001001 10
00110100
00111000

N

00101 100
00101010
001001 10

00110100
00111000

00101110
00111100

spilt
N

α N
β

s
α

s
β

α-seed
β-seed

4

Signature Files and Signature File Construction

Definition 2 (signature tree). A signature tree for a
signature file S = s

1
.s

2
s

n
, where s

i
¹�s

j
for i�j

and |s
k
| = F for k = 1, ..., n, is a binary tree T such

that:

1. For each internal node of T, the left edge leav-
ing it is always labeled with 0, and the right edge
is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as
pointers to n different positions of s

1
, s

2
 ... and

s
n
in S (signature file). For a leaf node u, p(u)

represents the pointer to the corresponding
signature in S.

3. Each internal node v is associated with a num-
ber, denoted sk(v), which is the bit offset of a
given bit position in the block signature pattern.
That bit position will be checked when v is
encountered.

4. Let j
1
, ..., j

h
be the numbers associated with the

nodes on a path from the root to a leaf node
labeled i (then, this leaf node is a pointer to the ith
signature in S). Let p

1
, ..., p

h
be the sequence of

labels of edges on this path. Then, (j
1
, p

1
) ... (j

h
, p

h
)

makes up a signature identifier for s
i
, s

i
(j

1
, ..., j

h
).

• Example 1. In Figure 4(b), we show a signature
tree for the signature file shown in Figure 4(a). In
this signature tree, each edge is labeled with 0 or
1, and each leaf node is a pointer to a signature in
the signature file. In addition, each internal node is
associated with a positive integer (which is used to
tell how many bits to skip when searching). Con-
sider the path going through the nodes marked 1, 7,
and 4. If this path is searched for locating some
signature s, then three bits of s: s[1], s[7], and s[4]
will have been checked at that moment. If s[4] = 1,
the search will go to the right child of the node
marked 4. This child node is marked with 5 and

then the fifth bit of s: s[5] will be checked.
See the path consisting of the dashed edges in
Figure 4(b), which corresponds to the identifier of
s

6
: s

6
(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1). Similarly,

the identifier of s
3
is s

3
(1, 4) = (1, 1)(4, 1); see the

path consisting of the thick edges in Figure 4(b).
Now we discuss how to search a signature tree to
model the behavior of a signature file as a filter.
Let s

q
 be a

query signature. The i-th position of s

q

is denoted as s
q
(i). During the traversal of a signa-

ture tree, the inexact matching is defined as fol-
lows:

1. Let v be the node encountered and s
q
(i) be the

position to be checked.
2. If s

q
(i) = 1, we move to the right child of v.

3. If s
q
(i) = 0, both the right and left child of v will

be visited.

In fact, this definition just corresponds to the
signature matching criterion.

• Example 2. Consider the signature file and the
signature tree shown in Figure 4(b) once again.
Assume s

q
= 000 100 100 000. We search the

signature tree top-down. First, we check the root r.
Since sk(r) = 1, we check the first bit in s

q
. It is 0.

Then, both the child nodes of r will be explored.
(See the thick edges in Figure 5.) When we visit
the left child node v of r, the seventh bit in s

q
will

be checked since sk(v) = 7. It is equal to 1. Then,
only the right child node of v will be checked. We
repeat this process until all the possible leaf nodes
are visited. Obviously, this process is much more
efficient than a sequential searching. For this ex-
ample, only 42 bits are checked (6 bits during the
tree search and 36 bits during the signature check-
ing). But by the scanning of the signature file, 96
bits will be checked. In general, if a signature file
contains N signatures, the method discussed above

Figure 4. Signature tree Figure 5. Signature tree search

011 001 000 101
111 011 001 111
111 101 010 111
011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

s
1
.

s
2
.

s
3
.

s
4
.

s
5
.

s
6
.

s
7
.

s
8
.

1

7 4

8

4 7

5

3.1.

4. 7.

2. 8.

0

0

0 0

0 0

0

1

11

11

1
1

(a)
Fig. 4. Signature tree

(b)

5. 6.

1

7 4

8

4 7

5

3.1.

4. 7.

2. 8.

6.5.

0

0

0 0

0 0

0

1

11

11

1
1

 5

Signature Files and Signature File Construction

�
requires only O(N/2l) comparisons in the worst
case, where l represents the number of bits set in
s

q
, since each bit set in s

q
will prohibit half of a

subtree from being visited. Compared to the time
complexity of the signature file scanning O(N), it
is a major benefit.
Due to limitation of space, we don’t discuss here
the maintenance of signature trees. An interested
reader is referred to Chen (2004) for detailed
description.

Integrating Signatures Into Tree
Inclusion

In this section, we discuss how to integrate signatures
into the tree inclusion problem, which is important to
containment queries in document databases. As pointed
out in Kilpelainen and Mannila (1995), the evaluation of
a containment query is in essence to check whether a
query tree is concluded in a document tree.

Let T be an ordered, rooted tree with root v and
children v

1
, v

2
, ..., v

i
. The postorder traversal of T(v) (the

tree rooted at v) is obtained by visiting T(v
k
), 1 ≤ k ≤ i in

order, recursively, and then visiting the v. The postorder
number, post(v), of a node v ∈V(T) is the number of
nodes preceding v in the postorder traversal of T. We
define an ordering of the nodes of T given by v π v’ iff
post(v) < post(v’). Also, v ˜ v’ iff v p v’ or v = v’.
Furthermore, we extend this ordering with two special
nodes ^ π v π T. The left relatives, lr(v), of a node v
∈ V(T) are the set of nodes that are to the left of v and
similarly the right relatives, rr(v), are the set of nodes
that are to the right of v.

Definition 3. Let S and T be rooted labeled trees.

We defined an ordered embedding (f, S, T) as an
injective function f: V(S) V(T) such that for all
nodes v, u ∈V(S),

1. label(v) = label(f(v)); (label preservation con-
dition)

2. v is an ancestor of u iff f(v) is an ancestor of
f(u); (ancestor condition)

3. v is to the left of u iff f(v) is to the left of f(u);
(sibling condition)

Figure 6 shows an example of an ordered inclusion.
In Figure 6(a), we show that the tree on the left can

be included in the tree on the right by deleting the nodes
labeled: d, e, and b. Figure 6(b) shows a possible embed-
ding. An embedding is root preserving if f(root(S)) =
root(T). Figure 6(b) shows also an example of the root
preserving embedding.

A lot of algorithms have been developed to check
tree inclusion, such as those reported in Alonso and
Schott (1993), Kilpelainen and Mannila (1995), Rich-
ter (1997), and Chen (1998). All the methods focus,
however, on the bottom-up strategies to get optimal
computational complexities, which are not suitable for
the database environment since the algorithms pro-
posed assume that both the target tree (or, say, the
document tree) and the pattern tree (or, say, the query
tree) can be accommodated completely in main memory.
Recently, a top-down algorithm was proposed (Chen &
Chen, 2004) which has the same time complexity as the
best bottom-up algorithm but needs no extra space.
More importantly, it works well in a database environ-
ment for the reason that it checks a target tree in a top-
down fashion, and each time only part of the tree is
manipulated. Furthermore, it can be combined with sig-
natures to speed up query evaluation.

Figure 6. Illustration of tree inclusion

Figure 7. Node signatures

a

b b b

a

b
b b

bb

a
d d

e e bb

(a) (b)

Fig. 6. Illustration of tree inclusion

a

t
0

t
1

t 1 1 t 12 t 21 t 22

t
2

T : a

b e

f e c d

(a)

a :
b :
c :
d :
e :
f :

0101 0000
0011 1000
0001 0101
0010 1000
1010 1000
1 1 00 0000

(b)

t 0
a 1 1 1 1 1 1 01

t
1

b
1 1 1 1 1000 t

2
e

1 0 1 1 1 1 01

t
1 1

f
1100 0000 t

12
e

1 0 10 1000 t
21

c
0001 0101 t 22

d
0010 1000

(c)

6

Signature Files and Signature File Construction

The top-down algorithm can be outlined as follows.
A detailed description can be found in Chen and Chen
(2004).

Algorithm top-down-tree-inclusion

1. Let r
1
 and r

2
be the roots of T and S, respec-

tively.
2. Let T

1
, ..., T

n
 be the subtrees of r

1
, and S

1
, ..., S

m

be the subtrees of r
2
.

3. If r
1
 doesn’t match r

2
, try to find an i (1 ≤ i ≤ n)

such that T
i
 includes the whole S.

4. If r
1
 matches r

2
, try to find i

1
, ..., i

k
such that

1i
T contains S

1
, ...,

1j
S ,

2i
T contains 11+jS , ...,

2j
S , and

ki
T contains 11+−kj

S , ...,
kj

S , where

kj
S = S

m
.

To speed up this process, we assign each label a
signature, and construct the signatures for non-
leaf nodes as follows:

Definition 4. Let v be a node in a tree T. If v is a
leaf node, its signature s

v

1
, …, s

n
 be its children,

then s
v
 = s ∨

1v
s ∨ ... ∨

nvs , where s represents the

signature for the label associated with v, and
1vs ,

... , and
nvs are the signatures of v

1
, ..., v

n
, respec-

tively.
Example 3. Consider the tree shown in Figure
7(a). If the signatures assigned to the labels are
those shown in Figure 7(b), rach node in the tree
will have a signature as shown in Figure 7(c).

Then, each time we check a node u in S against a node
v in T, we will first check their signatures. If they don’t
match, the subtree rooted at v will be cut off and not be
searched any more, reducing the time overhead greatly.

Here, an important problem is how to determine the
length of signatures. Due to the superimposing of signa-
tures along the tree paths, Equation (1) (shown in the
section Signature Files) is not useful any more since it
was established only for the simple structure of sequen-
tial signature files. However, if the length of signatures
is not properly determined, as in an S-tree, the signa-
tures near the root will be very heavy and the selectivity
will be reduced dramatically. For this reason, we make
the following analysis and develop a new way to estimate
the signature length in such a way that the above problem
can be removed.

Consider two signatures s
1
and s

2
. Assume that both

of them are of length F and with m
1
 and m

2
bits set to 1,

respectively. Now, let s = s
1

∨ s
2
. Obviously, s will

possibly contain more 1s. To keep the ratio of 1s in s not
increased, s should be set longer. The question is: How
long should s be? Let l be the number of 1s in s and
denote δ = l - m’, where m’ = max(m

1
, m

2
). Then, F + cδ

should be a reasonable length for s, where c is a constant
and should be tuned for different applications. The value
of δ can be estimated as follows.

Let � be a random variable representing the number
of positions, in which both s

1
and s

2
 have 1s. Then, the

mathematical expectation of � can be calculated as be-
low:

El = 1×p(l = 1) + 2×p(l = 2) + ... + m”×p(l = m”)
 (2)
where m” = min(m

1
, m

2
) and p(� = i) represents the

probability of l equal to i. To calculate this probability,
we use the following formula:

 (3)

Note that l = m
1
 + m

2
 - � . Then, we have δ = l - m =

m
1
 + m

2
 - � - max(m

1
, m

2
).

Using the above formulas, we can determine the
length of signatures for a tree as follows. First, we
calculate the average number of key words in all the leaf
nodes, which is used as the value of D to determine the
initial values of F and m using Equation (1). Then, we
compute the lengths of signatures for the internal nodes
in a bottom-up way. That is, we first calculate the lengths
for all those nodes, each of which is a parent of some
leaf nodes. Then, we compute the lengths for the nodes
at a higher lever. This process is repeated until the
length of the signature for the root is computed, which
will be used as the length of all the signatures to be
generated.

FUTURE TREND

As discussed above, the signature file is a useful tech-
nique for text indexing and query evaluation in data-
bases. It can also be utilized for some problems in the
computational graph theory, i.e., for the tree inclusion
problem. As future research, we will concentrate on an
interesting issue: how to reduce the size of a signature
file. This may be done by elaborating Equation (1),

 7

Signature Files and Signature File Construction

�
shown in the section Signature Files, which is only an
empirical formula. What we want is to find a mathemati-
cal method to determine, for a given set of key words
which are distributed in a collection of blocks, the
minimum length of the signatures and the best choice of
the number of bits that are set to 1.

CONCLUSION

In this article, four methods for constructing signature
files are described. They are the sequential signature
file, the bit-slice signature file, the S-tree, and the
signature tree. Among these methods, the signature file
has the simplest structure and is easy to maintain, but it
is slow for information retrieval. In contrast, the bit-
sliced file and the S-tree are efficient for searching but
need more time for maintenance. In addition, an S-tree
needs much more space than a sequential signature file
or a bit-slice file. The last method, i.e., the signature
tree structure, improves the S-tree by using less space
for storage and less time for searching. Finally, as an
important application, the signatures can be integrated
into the top-down tree inclusion strategy to speed up the
evaluation of containment queries. This can also be
considered as a quite different way to organize a signa-
ture file.

REFERENCES

Alonso, L., & Schott, R. (1993). On the tree inclusion
problem. Proceedings of Mathematical Foundations
of Computer Science, (pp. 211-221).

Andre-Joesson, H., & Badal, D. (1997). Using signature
files for querying time-series data. Proceedings of the
1st European Symposium on Principles of Data Min-
ing and Knowledge Discovery.

Chang, W. W., & Schek, H. J. (1989). A signature access
method for the STARBURST database system. Proceed-
ings of the 19th VLDB Conference, (pp. 145-153).

Chen, W. (1998). More efficient algorithm for ordered
tree inclusion. Journal of Algorithms, 26, 370-385.

Chen, Y. (2004). Building signature trees into OODBs.
Journal of Information Science and Engineering, 20,
275-304.

Chen, Y., & Chen, Y. B. (2004). An efficient top-down
algorithm for tree inclusion. Proceedings of the 18th
International Conference Symposium on High Per-
formance Computing System and Application,.

Christodoulakis, S., Theodoridou, M., Ho, F., Papa, M.,
& Pathria, A. (1986). Multimedia document presenta-
tion, information extraction and document formation in
MINOS—A model and a system. ACM Transactions On
Office Information Systems, 4(4), 345-386.

Ciaccia, P., & Zezula, P. (1996), Declustering of key-
based partitioned signature files. ACM Transactions on
Database Systems, 21(3), 295-338.

Deppisch, U. (1986). S-tree: A dynamic balanced signa-
ture index for office retrieval. ACM SIGIR Conference,
(pp. 77-87).

Faloutsos, C. (1985). Access methods for text. ACM
Computing Surveys, 17(1), 49-74.

Faloutsos, C. (1992). Signature files. In W. B. Frakes &
R. Baeza-Yates (Eds.), Information retrieval: Data
structures & algorithms (pp. 44-65). NJ: Prentice
Hall.

Faloutsos, C., Lee, R., Plaisant, C., & Shneiderman, B.
(1990). Incorporating string search in hypertext sys-
tem: User interface and signature file design issues.
HyperMedia, 2(3), 183-200.

Ishikawa, Y., Kitagawa, H., & Ohbo, N. (1993). Evalua-
tion of signature files as set access facilities in OODBs.
Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, (pp. 247- 256).

Kilpelainen, P., & Mannila, H. (1995). Ordered and
unordered tree inclusion. SIAM Journal of Computing,
24, 340-356.

Lee, W., & Lee, D. L. (1992). Signature file methods for
indexing object-oriented database systems. Proceed-
ings of ICIC’92—2nd International Conference on
Data and Knowledge Engineering: Theory and Appli-
cation, (pp. 616-622).

Richter, T. (1997). A new algorithm for the ordered tree
inclusion problem. In Lecture Notes of Computer Sci-
ence: Vol. 1264. Proceedings of the 8th Annual Sym-
posium on Combinatorial Pattern Matching, CPM
(pp. 150-166).

Sacks-Davis, R., Kent, A., Ramamohanarao, K., Thom,
J., & Zobel, J. (1995). Atlas: A nested relational data-
base system for text application. IEEE Transactions on
Knowledge and Data Engineering, 7(3), 454-470.

Tousidou, E., Bozanis, P., & Manolopoulos, Y. (2002).
Signature-based structures for objects with set-values
attributes. Information Systems, 27(2), 93-121.

Yong, H. S., Lee, S., & Kim, H. J. (1994). Applying
signatures for forward traversal query processing in

8

Signature Files and Signature File Construction

object-oriented databases. Proceedings of 10th Inter-
national Conference on Data Engineering, (pp. 518-
525).

KEY TERMS

Bit-Slice Signature File: A bit-slice file is a file in
which one bit per signature for all the signatures is
stored. For a set of signatures of length F, F bit-slice
files will be generated.

Sequential Signature File: A signature file is a set
of signatures stored in a file in a sequential way.

Signature Identifier: A signature identifier for a
signature in a signature file is a positioned bit string
which can be used to identify it from others.

Signature Tree: A signature tree is an index struc-
ture in which each path represents a signature identifier
for the signature pointed to by the corresponding leaf
node.

Signatures: A bit string generated for a key word by
using a hash function.

S-tree: An S-tree is a height-balanced multiway
tree. Each internal node corresponds to a page, which
contains a set of signatures, and each leaf node contains
a set of entries of the form <s, oid>, where the object is
accessed by the oid and s is its signature.

Tree Inclusion: Let T and S

be ordered, labeled

trees. S

is said to be included in T

if there is a sequence

of delete operations performed on T which make T
isomorphic to S.

